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Abstract 

In recent years there has been an increasing emphasis on providing access to 

computational thinking (CT) instruction for every K-12 student in the United States (U.S.). 

Concurrently, there has been an increase in the call for integrating CT concepts within STEM 

disciplines and standards documents. Specifically, computation, automation, artificial 

intelligence, and robotics has been identified as one of the eight technology and engineering 

context areas of the Standards for Technological and Engineering Literacy. However, the 

appearance of CT instruction in design and technology (D&T) courses varies drastically. One 

method that has been implemented in England and is becoming more popular in the U.S. is 

physical computing. This is an area of limited but growing research. This study utilized a quasi-

experimental design to examine the physical computing attitudes of 170 middle school students 

who participated in a screen-based or physical computing unit. The results indicated that students 

who completed the screen-based unit reported statistically greater attitudes toward classroom 

applications and career/future use of physical computing. Students who participated in the 

physical computing unit believed that physical computing made it more difficult to learn CT 

concepts, but they preferred the hands-on aspect of physical computing. This study provides 

implications for improving physical computing instruction and the STEM contexts withing 

which it is taught.  

 

Keywords: Computational Thinking, Physical Computing, Integrated STEM Education, Design 

and Technology, Technology and Engineering Education 

 

Introduction 

In recent years there has been an increasing emphasis on providing access to computer 

science (CS) education for every K-12 student in the United States (U.S.). One of the key 

concepts behind this movement is developing computational thinking (CT) skills in all students 

because of its applicability beyond computer science (Wing, 2006; Yadav et al., 2014). CT has 

been described as a fundamental problem-solving skill that can benefit students in solving 

abstract problems and understanding human behavior (Wing, 2006). The applicability of CT 

across science, technology, engineering and mathematics (STEM) disciplines is evident from its 

inclusion as one of the eight technology and engineering contexts within the Standards for 

Technological and Engineering Literacy (ITEEA, 2020) and one of the eight science and 

engineering practices in the Next Generation Science Standards (NGSS) (NGSS Lead States, 
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2013). Furthermore, professional associations such as the International Technology and 

Engineering Educators Association (ITEEA) and National Science Teaching Association 

(NSTA) have advocated for the meaningful integration of computational thinking across STEM 

content areas (Asante et al., 2021; ITEEA, 2021). 

While CT, technological and engineering literacy, and science and engineering practices 

all play a valuable role in preparing students to solve interdisciplinary STEM challenges, the best 

methods for integrating these skills to provide the greatest student learning benefits remains 

unclear. It has been proposed that physical computing can provide a more engaging and 

authentic integrated STEM learning experience in comparison to siloed coding instruction or 

solely virtual CT activities (Love & Bhatty, 2019; Love & Griess, 2020; Love & Rajyaguru, 

accepted; Love & Strimel, 2017; Love et al., 2016). Physical computing involves the 

programming of interactive physical systems or devices via software to teach students CT skills 

through physical tools and hands-on activity (Cápay & Klimová, 2019; Genota, 2019). It is 

rooted in constructivist learning theory and the work of Seymour Papert. As Romeike and 

Przybylla (2014) explained, “With physical computing, constructionist learning and typical 

processes of computer science education can be brought together in a creative and practical way” 

(p. 242). Anecdotal observations of physical computing in K–12 have indicated that students 

enjoyed the hands-on problem-solving nature of physical computing more than screen-based 

activities (Love & Bhatty, 2019; Love & Griess, 2020; Love et al., 2016). Despite these 

observations there remains a lack of empirical research examining K-12 the benefits of physical 

computing for students compared to traditional screen-based CT instructional methods.  

 

Literature Review 

The call for integrating computing and design and technology (D&T) within K-12 

contexts is not a novel concept. England had advocated for this integration with the inclusion of 

physical computing concepts in their national curricula before the computer science for all 

initiative gained momentum in the U.S. The Royal Academy of Engineering in England has 

provided guiding documents to help educators apply computing within D&T to program and 

control physical systems (Royal Academy of Engineering, 2014). The Royal Academy of 

Engineering proposes that teaching students to program and control physical D&T systems they 

designed themselves is a highly motivating and tangible experience that reflects relevant and 

practical contexts which students will encounter in the world outside of school. 

More recently, the U.S. has placed greater emphasis on computer science and STEM 

literacy for all in K-12 to address the critical shortage of graduates prepared to enter the 

workforce in these fields. This was reflected in the development of computer science standards 

in 2017 (CSTA, 2017). While designing and controlling electronic systems was encompassed 

within the designed world standards of the Standards for Technological Literacy (ITEA/ITEEA, 

2000/2002/2007), the more recently released Standards for Technological and Engineering 

Literacy (STEL) (ITEEA, 2020) specifically identified computation, automation, artificial 

intelligence, and robotics as one of the eight technology and engineering context areas. Various 

applications of computing within D&T contexts (e.g., physical computing) are highlighted within 

the aforementioned STEL context area. Similar to the Royal Academy of Engineering (2014) 

document, the STEL provides examples of authentic, design-based computational learning 

experiences to encourage the integration of core D&T concepts with this context area.  
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Examples and Benefits of Physical Computing in K-12 

Aside from the examples in the STEL, a number of other resources have provided quality 

exemplars of K-12 physical computing lessons that integrate an array of STEM concepts. Some 

educators have focused on integrating science through physical computing to teach concepts 

related to the function of a four-chambered heart  (TI, 2017a), irrigation systems (TI, 2017b), 

automated farming (Simpson, 2017), and smart greenhouses (Asante et al., 2021). From a D&T 

lens, a number of educators have demonstrated how physical computing can align with 

technology and engineering context area topics such as smart home devices (Love et al., 2016), 

autonomous vehicles (Love & Bhatty, 2019), micro electric vehicles (Bartholomew et al., 2020), 

e-textiles (Strimel et al., 2019), and the engineering design process (Love & Griess, 2020). These 

are just a few examples highlighted within science, technology, and engineering education 

contexts. For a variety of reasons, computational thinking concepts have often been taught via 

screen-based programs or digital apps. Code.org (2021) recently integrated a physical computing 

unit into its Computer Science Discoveries curriculum. These various examples signify that 

educators may believe there are benefits to implementing physical computing to teach 

computational thinking and engineering design skills. What the impact is compared to solely 

screen-based computing instructional strategies has not been explored in great detail. 

 

Prior Research on Physical Computing in K-12 

Przybylla et al. (2017) found programmable microcontrollers provide an attractive and 

promising approach to teaching physical computing. Teachers in their study expressed they were 

most interested in physical computing from a pedagogical standpoint to promote motivation, 

direct feedback, and tangibility of computational thinking concepts. The teachers also expressed 

the main issues that prevented them from implementing physical computing activities were 

factors such as limited time, technical difficulties with the hardware, and not enough training or 

instructional resources. Interestingly, the teachers did not report collaborating with other 

educators often to teach physical computing. The most frequent collaboration they reported was 

with art and physics teachers to outsource the fabrication of physical computing projects.  

In regard to students, Hodges et al.’s (2020) research found that physical computing 

could provide more positive experiences than screen-based experiences due to the support for 

open ideation. They also discovered that students appreciated building real, tangible devices and 

that physical computing platforms stimulated students’ creativity. Additionally, they found 

female students to be more engaged through physical computing activities than screen-based 

experiences. In Sentence and Schwiderski-Grosche’s (2012) study, secondary students reported 

that they enjoyed the challenge and freedom that physical computing provided along with the 

tactile coding experience beyond a computer screen; however, they also indicated that physical 

computing was difficult. The researchers noted that physical computing appeared to increase 

female students’ confidence and interest in learning to code. 

 

Attitudes Toward Physical Computing 

A number of attitudinal scales have been found to provide valid and reliable insight 

regarding the impact of computer science related educational interventions (Boulden et al., 2021; 

Hoegh & Moskal, 2009; Yadav et al., 2014). Love and Rajyaguru’s (accepted) research explored 

changes in secondary students’ attitudes toward physical computing after participating in a four-

week physical computing unit that utilized the Crumble (a microcontroller that can be 

programmed using drag and drop block-based coding to control external electronic sensors). 
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Students’ reported statistically significant increases in five computational thinking attitude 

constructs (definition, comfort, interest, classroom applications, and career/future use). More 

specifically, they found that students’ attitudes toward the coding and engineering items both had 

significantly increased as a result of participating in the physical computing unit. Love and 

Rajyaguru concluded that participation in a physical computing unit has the potential to increase 

students’ attitude toward physical computing. 

 

Purpose of the Study 

Although the literature indicated that physical computing can have positive benefits, there 

were also concerns raised about classroom implementation and the level of difficulty expressed 

by students. Furthermore, there was a limited amount of research investigating the impact that 

physical computing can have in comparison to traditional screen-based methods when 

controlling for specific factors (e.g., prior engineering and coding experiences, gender). This 

study sought to address that gap and was guided by the following research questions: 

Research Question 1 (RQ1): Is there a statistically significant difference between the control 

(screen-based) and experimental (physical computing) groups regarding students’ 

attitude toward physical computing? 

Research Question 2 (RQ2): Is there a statistically significant difference between the control 

and experimental groups’ attitudes toward engineering and coding items? 

Research Question 3 (RQ3): Is there a statistically significant difference between the control 

and experimental groups regarding students’ attitude toward physical computing after 

controlling for prior engineering course experiences? 

Research Question 4 (RQ4): Is there a statistically significant difference between the control 

and experimental groups regarding students’ attitude toward physical computing after 

controlling for prior computer science course experiences? 

Research Question 5 (RQ5): Is there a statistically significant difference between students’ 

attitude toward physical computing when examining the linear combination of control 

and experimental groups and participants’ gender? 

Research Question 6 (RQ6): Is there an identifiable difference between the control and 

experimental groups regarding students’ learning preference for future coding lessons? 

 

Methodology 

A quasi-experimental design was employed to administer the survey to 170 seventh grade 

(12-13 years old) students in a suburban secondary school within the U.S. The students 

participated in either the control group (completed a Scratch game design screen-based unit) or 

the experimental group (completed a physical computing unit using the Crumble 

microcontroller). The Scratch game design unit was taught by an educator who had been 

teaching computer applications and coding courses at the school for seven years and they did not 

receive any training on physical computing. Conversely, the Crumble unit was taught by a design 

and technology (D&T) educator who was in their sixth year of teaching D&T at the school and 

who had completed undergraduate coursework in electronics and design-based pedagogy. One of 

the researchers who had experience leading numerous physical computing workshops at state 

and national conferences provided one full day of professional development (PD) for the D&T 

teacher only. The PD covered methods for integrating the Crumble microcontroller within 

integrated STEM design challenges. Based on success in prior studies, the Crumble was deemed 

the best device for implementing physical computing design challenges at this age level due to 
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its low cost, easy usability, durability, and readily available instructional resources (Love & 

Bhatty, 2019; Love & Griess, 2020; Plaza et al., 2018).  

After the one day PD session, the researcher assisted the D&T teacher in developing an 

authentic physical computing design challenge. The challenge required students to utilize the 

Crumble to control the physical prototype they created through the engineering design process. 

Students were tasked with solving the collision avoidance design challenge (Love & Bhatty, 

2019). They had to design a mini vehicle out of cardboard, hardboard, or 3D printed material to 

custom fit the Crumble and various sensors. Their vehicle had to include LED lights which 

changed color when driving versus stopped, forward/reverse wheel motors, and a distance sensor 

that stopped the car to prevent collisions. Some students integrated the line follower sensor and 

created an autonomous vehicle course. Other students added wire tethered push buttons to 

control the steering and direction of the vehicle. The design challenge allowed freedom for 

students to customize their vehicle as needed and add additional safety features they believed 

were important. 

The collision avoidance design challenge was implemented during a four-week physical 

computing unit taught to three middle school D&T class sections (n = 72). First, students were 

introduced to the Crumble and tasked with completing a series of Crumble design challenges to 

practice creating electronic circuits using various sensors and programing them using the 

Crumble software. Examples of these design challenges included programming LEDs to operate 

like a traffic signal, a burglar alarm that used the distance sensor and a buzzer, and others 

developed by Redfern Electronics (2021) who produces the Crumble. In the second phase of the 

unit, students were tasked with designing the physical prototype of their vehicle under the 

constraints that it must be able to go forward and backward, and securely house the Crumble plus 

any sensors. Students researched autonomous vehicle features and leading causes of accidents in 

the U.S. to design what safety features and sensors they wanted to integrate into their vehicle 

design (Love & Bhatty, 2019). Students then created their vehicle prototypes using various 

materials and tools, tested them out, and made any necessary adjustments to optimize the 

function of their vehicle. During the third and final phase of the unit, students were required to 

draw schematics of their Crumble and sensors, as well as designs for how the sensor system 

would be integrated into their vehicle. The instructor then helped students troubleshoot their 

design as they assembled their circuit and coded their Crumble.  

The control group consisted of four sections of students (n = 98) at the same grade level 

and in the same school as the experimental group. They were led through three weeks of a 

screen-based Scratch game design unit. Neither instructor had honors courses and students were 

randomly placed in each class by the school counselors. When this study was conducted students 

were in their first rotation of courses for the year. Students in the D&T course did not have the 

computer science course that academic year, and vice versa. This allowed the researchers to 

examine if there were differences among the two groups of students. To examine potential 

differences, both the experimental and control groups completed a Likert-scale survey after their 

respective three-week physical computing or Scratch screen-based unit. Responses from both 

groups were collected online via survey software and analyzed in the SPSS 27 statistical 

software package. 

 

Instrumentation  

The instrument utilized in this study was based off of the work of Hoegh and Moskal 

(2009). They convened a panel of assessment and computer science education experts to develop 
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a questionnaire that could measure students’ attitude toward computing based on five key 

constructs from the literature: definition, comfort, interest, classroom applications, and 

career/future use. The instrument was found to be reliable and valid through Cronbach’s alpha 

tests and a factor analysis (Hoegh & Moskal, 2009). Yadav et al. (2014) later built upon Hoegh 

and Moskal’s work to develop the Computing Attitude Questionnaire (CAQ). The CAQ utilized 

the same constructs identified by the expert panel in Hoegh and Moskal’s study and consisted of 

21 Likert scale items. Yadav et al. tested the instrument among a sample of 377 preservice 

teachers and established acceptable reliability through Cronbach’s alpha tests. Leonard et al. 

(2018) later used this instrument to examine attitudes toward and the understanding of 

computational thinking among teachers who participated in robotics and game design treatment 

groups.  

For this study, we made slight modifications to the items from Yadav et al.’s (2014) 

instrument while maintaining the same number of items with similar wording and in the original 

five key constructs. The slight modifications made the items more readable for 12-13 year old 

students and allowed the researchers to not only examine students’ attitude toward coding 

concepts, but also their attitude toward engineering design concepts. As described in the 

literature review, the unique blend of coding and engineering design is a key characteristic of 

physical computing. These slight modifications included replacing the terms “computational 

thinking”, “computing”, and “computer science” with the term “coding” as it was more familiar 

to students at this age. Those 21 items were then duplicated and the term coding was replaced 

with “engineering.” An example of two items from the comfort construct are: “I use coding skills 

in my daily life” and “I use engineering skills in my daily life.” This resulted in the “Physical 

Computing Attitude Survey (PCAS)”, an instrument that allowed for measuring students’ 

attitudes towards coding and engineering. 

To better understand what the instrument was measuring, the five constructs must first be 

examined. The definition construct examined students’ understanding of the definition of coding 

or engineering. Comfort measured participants’ comfort level with coding or engineering, while 

the interest items gauged their level of interest in coding or engineering. The classroom 

applications items gauged students’ attitude about the integration and learning of coding or 

engineering concepts in their courses. Lastly, the career/future use construct measured students’ 

attitude regarding the influence that coding or engineering will have on their future academic and 

career choices. Due to the slight modifications to the instrument items, Cronbach’s alpha tests 

were conducted to determine the reliability of the items. The PCAS (α =.908) items revealed 

high internal reliability. Additional Cronbach’s alpha tests revealed the coding (α =.794) and 

engineering (α =.822) items demonstrated strong or acceptable internal reliability measures. 

Based on these strong internal reliability measures the PCAS was deemed a feasible instrument 

to examine students’ attitude toward physical computing. 

 

Participants 

 There were 170 total students who participated in this study, 98 from the control group 

and 72 from the experimental group. The two groups had an identical percentage of male and 

female students.  The majority of students in both groups identified as White. In comparison to 

the control group, the experimental group had a higher percentage of students who had taken an 

engineering course prior to this study. Both groups had a large percentage of students who had 

reported taking a coding course before participating in the survey. 
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Table 1 

 

Participant Demographics 

 

 

Characteristic 
Control Experimental 

n (%) n (%) 

Gender   

Male 46 (47) 34 (47) 

Female 52 (53) 38 (53) 

Race   

White 73 (75) 57 (79) 

Black 10 (10) 4 (6) 

Hispanic 2 (2) 3 (4) 

Asian 0 (0) 3 (4) 

Native American 0 (0) 1 (1) 

Middle Eastern 1 (1) 4 (6) 

Latin American 2 (2) 0 (0) 

Multiple Races 10 (10) 0 (0) 

Prior Coursework 

Completed 

  

Engineering 41 (42) 47 (65) 

Coding  83 (85) 64 (89) 

Note. Control group n = 98; experimental group n = 72 

 

Data Analyses 

The survey responses were organized using the SPSS version 27 statistical software and 

analyses were performed in different steps. First, descriptive statistics and tests for assumptions 

were conducted to analyze the overall item response and identify any possible trends or 

anomalies in the responses. Next, various categories from the survey items were analyzed using 

multivariate analysis of variance (MANOVA), multivariate analysis of covariance 

(MANCOVA), and multinomial logistic regression with the intervention condition (control vs. 

experimental) and other variables in the data set. Specifically, the participants’ responses to 

survey items within each category were aggregated and then averaged based upon the number of 

items in each category. Reverse coding of the negatively worded items was implemented as 

specified by Yadav et al., (2014). The average scores from all the MANOVA, MANCOVA, and 

multinomial logistic regression analyses were utilized. We used the Wilk’s Lambda value in the 

MANOVA and MANCOVA analyzes because the aggregate or the overall (multivariate tests) 

was comprehensive and suitable for a different number of respondents for each category 

involving independent variable(s) (Grice & Iwasaki, 2007). Meanwhile, the results of the data 

analysis were also carried out separately (tests of between-subjects effects) as the researchers 

wanted to get more accurate results by using Bonferroni alpha value. The use of Bonferroni can 

control the problem of Type 1 error, which often occurs in a study (An et al., 2013; Grice & 

Iwasaki, 2007). All analyses were considered statistically significant at the p < .05 level. 
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Findings 

 

Attitude Toward Physical Computing (RQ1) 

 In answering RQ1, a one-way (5 x 1) between-subjects multivariate analysis 

(MANOVA) was performed to determine whether there were any differences between students’ 

attitude toward physical computing. The dependent variables on students’ attitude toward 

physical computing were the instrument constructs (definition, comfort, interest, classroom 

applications, and career/future use). The intervention served as the independent variable on two 

levels (control group and experimental group). There were satisfactory results after evaluating 

the assumptions of normality, homogeneity of variance-covariance matrices [the Box’s M of 

21.22 indicates that the homogeneity of covariance matrices across groups was assumed [ F(15, 

93643) = 1.37, p = .15], linearity, and multicollinearity. Using Wilk’s Lambda as the criterion, 

the multivariate effect was statistically significant by intervention levels F(5, 164) = 3.56, p < 

.05, partial η2 = .10. The univariate tests showed that there were statistically significant 

differences across the intervention levels on the classroom applications, F(1, 168) = 4.20, p < 

.05, partial η2 = .02 and career/future constructs, F(1, 168) = 5.44, p < .05, partial η2 = .03. The 

Bonferroni post hoc tests suggested that students in the control group of the intervention (M = 

7.33, SD = 0.13) had greater attitudinal scores toward physical computing within the classroom 

applications construct. Similarly, the post hoc tests using Bonferroni suggested that students in 

the control group (M = 24.47, SD = 0.49) had greater attitudinal scores toward physical 

computing within the career/future use construct. 

 

Attitudes Toward Engineering and Coding Items (RQ2)  

In order to answer RQ2, a one-way MANOVA was used to determine whether there was 

an identifiable difference in students’ attitudes toward engineering or coding items based on their 

group (control or experimental). The dependent variables were the engineering item scores and 

the coding item scores. The intervention group served as the independent variable on two levels 

(control group and experimental group). A non-significant Box’s M test (p = .32) indicated 

homogeneity of covariance matrices of the dependent variables across the levels of intervention 

group. The multivariate effect was not statistically significant by intervention group levels, F(2, 

167) = .78, p = .47, partial η2 = .01. So, we fail to reject the null hypothesis and concluded that 

there was not a statistically significant difference between control and experimental group 

participants’ attitudes toward engineering or coding items. 

 

Controlling for Prior Engineering Coursework (RQ3) 

The objective of RQ3 was to determine whether there were differences between students’ 

attitudes towards the five instrument constructs after controlling for the effect of prior 

engineering courses. This was achieved by performing a multivariate analysis of covariance 

(MANCOVA). The dependent variables were definition, comfort, interest, classroom 

applications, and career/future use. The independent variable was physical computing at two 

levels (experimental group and control group), and the covariate was students’ prior engineering 

course completion. Results of evaluating assumptions of normality, homogeneity of variance-

covariance matrices [the Box’s M of 21.22 indicates that the homogeneity of covariance matrices 

across groups is assumed [ F(15, 93643) = 1.37, p = .15], linearity, and multicollinearity were 

satisfactory. With the use of Wilk’s Lambda criterion, the multivariate effect was statistically 

significant F(5, 163) = 3.91, p < .05, partial η2 = .11. The univariate tests showed that there were 
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statistically significant differences across the physical computing attitude for the constructs of 

classroom applications F(1, 167) = 6.51, p < .05, partial η2 = .04 and career/future use F(7, 161) 

= 9.65, p < .05, partial η2 = .06. When compared to the experimental group, students in the 

control group showed significantly higher means in their attitudes toward the physical computing 

classroom applications and career/future use constructs. The Bonferroni post hoc tests suggested 

that students in the control group (M = 7.33, SD = 0.13) had greater attitudes toward the 

classroom applications of physical computing after controlling for their prior engineering course 

experience. Similarly, the post hoc tests using Bonferroni suggested that students in the control 

group (M = 24.47, SD = 0.49) had greater attitudes toward their career/future use of physical 

computing when controlling for prior engineering course experience.  

 

Controlling for Prior Computer Science Coursework (RQ4) 

In investigating RQ4, the dependent variables were the instrument constructs of 

definition, comfort, interest, classroom applications, and career/future use. The independent 

variable was physical computing at two levels (experimental group and control group), and the 

covariate was students’ prior coding course experiences. Evaluation of the homogeneity of 

variance-covariance matrices and normality assumptions underlying MANCOVA did not reveal 

any substantial anomalies, and the a priori level of significance was set at .05. The multivariate 

analysis of covariance (MANCOVA) was performed to investigate differences in students’ 

attitudes related to the five instrument constructs after controlling for the effect of students’ prior 

coding course experiences. The multivariate result from the MANCOVA was statistically 

significant F(5, 163) = 3.53, p < .05, partial η2 = .10. according to Wilk’s Lambda criterion. The 

univariate tests showed that there were statistically significant differences across the two groups 

in regard to classroom applications, F(1, 167) = 4.40, p < .05, partial η2 = .03 and career/future 

use, F(1, 167) = 5.93, p < .05, partial η2 = .03. The Bonferroni post hoc tests suggested that 

students in the control group (M = 7.33, SD = 0.13) had greater attitudinal scores toward the 

classroom applications of physical computing after controlling for their prior coding course 

experience. Similarly, the post hoc tests using Bonferroni suggested that students in the control 

group (M = 24.50, SD = 0.49) had greater attitudinal scores toward the career/future use 

construct of physical computing after controlling for their prior coding course experience. 

 

Differences Between Male and Female Students (RQ5) 

The purpose of RQ5 was to understand if there was an interaction between the two 

independent variables (participant groups and gender) on the two dependent variables (coding 

items and engineering items). Again, evaluation of the homogeneity of variance-covariance 

matrices and normality assumptions underlying MANOVA did not reveal any substantial 

anomalies, and the apriori level of significance was set at .05. Using Wilk’s Lambda as a 

criterion, the multivariate results from the MANOVA for the combined dependent variables was 

statistically significant F(2, 165) = 4.85, p < .05, partial η2 = .06 for gender. However, the 

MANOVA was not statistically significant for the participant groups (control and experimental) 

F(2, 165) = 0.65, p = .53, partial η2 = .01. No statistically significant interaction was found, F(2, 

165) = 2.87, p = .06, partial η2 = .03. To investigate the impact of the effects on the individual 

dependent variables, a univariate F-test using an alpha level of .05 was performed. The main 

effect of gender was statistically significant on only engineering, F(1, 166) = 6.94, p < .05, 

partial η2 = .04. The pair-wise comparison followed by a univariate F-test indicated that the 

statistically significant difference was found between male and female students in engineering. 
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The Bonferroni test suggested that male students (M = 40.71, SD = 0.71) had higher attitudinal 

scores toward the engineering items than female students (M = 38.13, SD = 0.67). 

 

Preference for Learning Computer Science (RQ6):  

 The surveys asked supplemental questions about students’ preferences for learning 

coding concepts. The control group was asked if they believed that learning coding would be 

easier or more difficult with the integration of hands-on engineering processes/materials and 

coding/electronic components to automate a product they built. They were also asked if in future 

lessons they would prefer to learn coding in conjunction with physical hands-on engineering 

design activities, or if they would prefer to learn coding in a screen-based format. The same 

questions were posed to the experimental group but in relation to the Crumble since they had 

participated in the intervention (ex. Do you think the hands-on engineering aspect of the 

Crumble made learning coding easier or more difficult than only using a computer?). A higher 

percentage of students in the control group (74%) believed physical computing would make 

learning coding a little or much easier in comparison to the experimental group (60%). However, 

a higher percentage of students in the experimental group indicated they would prefer to learn 

coding through physical computing as opposed to screen-based methods (Table 2). 

 

Table 2   
 

Supplemental survey question about preferred methods to 

learn coding concepts 

  

 Control Experimental 

Response n  (%) n  (%) 
 Hands-on physical 

computing format? 

   

 Much easier  21 (21) 10 (14) 
 A little easier  52 (53) 33 (46) 

     No difference   20 (20) 19 (26) 

 More difficult  4  (4) 8 (11) 
 Much more difficult  1 (1) 2 (3) 
 Preferred learning 

format? 

   

 Physical computing  70 (71) 56 (78) 
 Computers only  28 (29) 16 (22) 

Note. Control group n = 98; experimental group n = 72 

 

Discussion 

The findings indicated students who participated in the screen-based unit had greater 

attitudes toward physical computing in the constructs of classroom applications and career/future 

use. This was true for analyses examining all instrument items, when controlling for prior coding 

course experience, and engineering course experience. This contradicts the researchers’ 

hypothesis that students who participated in the physical computing intervention group would 

report greater attitudinal scores toward physical computing. Given the background of the 

instructors and the nature of the D&T course in which the physical computing unit was taught, 
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the researchers also hypothesized students in the experimental group would have reported greater 

attitudinal scores toward the engineering items. When examining the open ended responses 

provided by students in the experimental group, they reflect similar findings to that of students in 

Sentence and Schwiderski-Grosche’s (2012) study. In both studies, middle school students 

expressed the were intrigued by the open-ended and tactile characteristics of physical computing, 

but they found it much more challenging than screen-based learning. Their view that physical 

computing was more challenging or frustrating could have caused them to view it as not highly 

applicable in a course. In comparison, students in the screen-based group may not have 

experienced as many challenges that are inherent with physical computing activities (e.g., 

electronic components, prototyping, and software). These challenges reported by students could 

have also influenced their attitude toward their future use of items that they struggled to get to 

operate correctly. The context of the design challenge could have also had an impact on 

career/future use as opposed to students being able to identify their own problem to solve that 

may have had greater future implications in their mind.  

The design challenge in the experimental group may have also not been as appealing to 

female students in comparison to the Scratch game design that students in the control group 

completed. Sentence and Schwiderski-Grosche’s (2012) study indicated that because of the 

open-ended nature of physical computing, it appeared to increase female students’ interest and 

confidence in coding. In this study, the higher attitude scores toward engineering by male 

students may be reflective of the collision avoidance design challenge. Providing a more gender 

neutral or open-ended design challenge, such as some of the examples cited in the literature 

review (e.g., e-textiles) may been more appealing and engaging to female students.   

 Lastly, the supplemental questions revealed some interesting results from students in 

regard to their preference for future coding lessons. Compared to the experimental group (60%), 

a higher percentage of students in the control group (74%) believed it would be easier to learn 

coding through the integration of hands-on engineering design activities (physical computing). 

However, when asked how they would prefer to learn coding concepts in future courses, the 

majority of students in both the control (71%) and experimental (78%) groups indicated they 

would prefer learning coding integrated within hands-on engineering design challenges. The 

supplemental open ended responses from students in the experimental group provided insight 

about these interesting results. Many students in the experimental group mentioned that the 

Crumble and sensors made the challenge more complex. Troubleshooting the electronic 

components, developing a physical prototype, and programming the Crumble each added 

additional challenges for students to solve. For example, students provided responses such as, “I 

liked that we could design different light patterns using things we'd learned in computer class. I 

didn't like how difficult some of the design challenges were” or “It was cool when you 

completed a challenge but it was difficult.” Despite these responses about the challenges, some 

of the students indicated they liked having the hands-on aspect as opposed to just coding in the 

Crumble software, “I liked how you could actually see what the code is doing in real life.” These 

findings are consistent with Sentence and Schwiderski-Grosche’s (2012) study. 

 

Limitations 

There are a few limitations of this study that must be considered. This study may not be 

generalizable as it involved students from one suburban middle school. Additionally, only a 

posttest was conducted for each group after they completed their respective unit. Utilizing a 

pretest and posttest design for both groups could be beneficial in future studies to examine gains 
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as a result of the intervention. Furthermore, the influence of the teachers is unknown. While PD 

was provided to the experimental group instructor, he had limited coding teaching experience in 

comparison to the control group instructor. Continued resources, support, and PD for inservice 

teachers could enhance CT instruction. 

 

Conclusions 

The results of this study indicate that although many students found the idea of hands-on 

physical computing intriguing, those who participated in the physical computing unit believed it 

was more challenging than simply screen-based coding activities. The potential for increased 

chance of failure and troubleshooting associated with physical computing was not appealing to 

students. These troubleshooting skills that integrate multiple STEM concepts to design 

innovative systems are important for solving authentic engineering design challenges. This 

learning by failure provides arguably a more valuable learning experience for students. Although 

not popular among the students, learning to overcome challenges and failure could provide 

beneficial life skills  

This study provides important implications for further examining how physical 

computing is taught and how it can be improved to teach important skills that students may not 

obtain through screen-based lessons. Furthermore, the study provides insight for STEM and 

computer science educators considering implementing physical computing units in their courses. 

The findings provide substantial implications for D&T educators who may find their programs 

competing with computer science programs as elective courses and are seeking unique ways to 

integrate authentic coding and engineering experiences that appeal to all students. Physical 

computing can draw upon D&T educators’ expertise in electronics concepts, the engineering 

design process, and coding to provide a unique standards-based interdisciplinary learning 

experience. This study calls for further research regarding physical computing instruction and 

student learning to enhance their views toward classroom applications and career/future use of 

physical computing skills. 

 

Recommendations 

For Researchers 

 Despite the instrument items demonstrating strong reliability measures, the items should 

be examined for clarity and specificity before using in future physical computing studies. In 

future studies it is recommended that a pretest and posttest comparison be performed to compare 

gains between groups. Additionally, longer training and additional support should be provided 

for instructors who are new to physical computing and implementing it as part of future studies.  

 

For Practitioners 

 As indicated by the literature, school districts should seek to provide sufficient PD and 

resources to support teachers in implementing physical computing. This includes materials, 

instructional resources, instructional time, and collaborative planning opportunities. It is highly 

recommended that teachers who are interested in implementing physical computing practice 

conducting the lesson activities and provide a wealth of supplemental resources for students as 

they indicated that they find physical computing interesting but also more challenging and 

frustrating. Teachers should ensure the physical computing design challenges are open ended and 

realistic to appeal to all students. 
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